Abstract Lattice-based digital signature has become one of the widely recognized post-quantum algorithms because of its simple algebraic operation, rich mathematical foundation and worst-case security, and also an important tool for constructing cryptography. This survey explores lattice-based digital signatures, a promising post-quantum resistant alternative to traditional schemes relying on factoring or discrete logarithm problems, which face increasing risks from quantum computing. The study covers conventional paradigms like Hash-and-Sign and Fiat-Shamir, as well as specialized applications including group, ring, blind, and proxy signatures. It analyzes the versatility and security strengths of lattice-based schemes, providing practical insights. Each chapter summarizes advancements in schemes, identifying emerging trends. We also pinpoint future directions to deploy lattice-based digital signatures including quantum cryptography.