Nanomaterials (Sep 2023)

Development of Hydroxyapatite Coatings for Orthopaedic Implants from Colloidal Solutions: Part 2—Detailed Characterisation of the Coatings and Their Growth Mechanism

  • Bríd Murphy,
  • Mick A. Morris,
  • Jhonattan Baez

DOI
https://doi.org/10.3390/nano13182606
Journal volume & issue
Vol. 13, no. 18
p. 2606

Abstract

Read online

This study is the second part of a two-part study whereby supersaturated solutions of calcium and phosphate ions generate well-defined hydroxyapatite coatings for orthopaedic implants. An ‘ideal’ process solution is selected from Part 1, and the detailed characterisation of films produced from this solution is undertaken here in Part 2. Analysis is presented on the hydroxyapatite produced, in both powder form and as a film upon titanium substrates representative of orthopaedic implants. From thermal analysis data, it is shown that there is bound and interstitial water present in the hydroxyapatite. Nuclear magnetic resonance data allow for the distinction between an amorphous and a crystalline component of the material. As hydroxyapatite coatings are generated, their growth mechanism is tracked across repeated process runs. A clear understanding of the growth mechanism is achieved though crystallinity and electron imaging data. Transmission electron imaging data support the proposed crystal growth and deposition mechanism. All of the data conclude that this process has a clear propensity to grow the hydroxyapatite phase of octacalcium phosphate. The investigation of the hydroxyapatite coating and its growth mechanism establish that a stable and reproducible process window has been identified. Precise control is achieved, leading to the successful formation of the desired hydroxyapatite films.

Keywords