Advances in Mechanical Engineering (Sep 2021)

Eccentric compression behavior of FRP-concrete-steel tubular composite columns

  • Ni Zhang,
  • Chenyang Zheng,
  • Zhongwei Zhao,
  • Bo Yang

DOI
https://doi.org/10.1177/16878140211035587
Journal volume & issue
Vol. 13

Abstract

Read online

FRP-concrete-steel tubular (FCS) composite columns are composed of the external tube, the internal steel tube, and the concrete between both tubes. They have been attracting the attention of many researchers due to their high ductility, lightweight, resistance to corrosion, and easiness of construction. However, there are few studies on FRP-concrete-steel tubular composite columns under eccentric load. To investigate the behavior of composite columns under the eccentric compression, a non-linear analysis program for FCS composite columns was compiled. The program was verified by existing tests, and the influences of eccentricity, FRP tube wall thickness, steel tube wall thickness, steel tube radius, slenderness ratio, and concrete strength grade on the eccentric compression performance were systematically analyzed. The results showed that the calculated results were in good agreement with the experimental results. It showed that the program can accurately reflect the deformation of FCS composite columns under various loads and estimate the ultimate load of FCS composite columns under eccentric compression. The eccentric ultimate load increased with the decrease of eccentricity and slenderness ratio, and with the increase of FRP tube wall thickness, steel tube wall thickness, and concrete strength grade. The ultimate eccentric load decreased with the increase of steel tube radius, but when the steel tube wall thickness reached a certain thickness, the ultimate eccentric load of FCS composite columns increases with the increase of steel tube radius. The conclusion can provide reference for the practical application of the structure.