mBio (Dec 2022)

PML Body Component Sp100A Is a Cytosolic Responder to IFN and Activator of Antiviral ISGs

  • Hongchang Dong,
  • Wencheng Wu,
  • Jingjing Li,
  • Yilei Ma,
  • Xiaomei Deng,
  • Deyin Guo,
  • Pei Xu

DOI
https://doi.org/10.1128/mbio.02044-22
Journal volume & issue
Vol. 13, no. 6

Abstract

Read online

ABSTRACT Promyelocytic leukemia protein (PML) bodies are implicated in one of the key pathways in the establishment of antiviral status in response to interferon (IFN), yet the molecular mechanisms bridging the cross talk remain elusive. Herein, we report that a major constitutive component of the PML body, Sp100A, is ubiquitously located in the cytosol of various cell types and is an immediate responder to multiple extracellular stimuli, including virus infection, IFN, epidermal growth factor (EGF), glial cell-derived nerve factor (GDNF), etc., signaling through the phosphatidylinositol 3-kinase (PI3K) pathway. IFN-β induces phosphorylation of Sp100A on Ser188, which fortifies the binding of Sp100A to pyruvate kinase 2 (PKM2) and facilitates its nuclear importation through the extracellular signal-regulated kinase 1/2 (ERK1/2)-PKM2-PIN1-importin axes. Blocking PI3K pathway signaling or interference with the ERK1/2-PKM2-PIN1-importin axes independently hampers nuclear translocation of Sp100A in response to IFN, reflecting a dual-regulation mechanism governing this event. In the nucleus, Sp100A is enriched in the promoter regions of essential antiviral interferon-stimulated genes (ISGs), such as those coding for IFI16, OAS2, and RIG-I, and activates their transcription. Importantly, nuclear importation of Sp100A, but not accumulation of a mutant Sp100A that failed to respond to IFN, during infection potently enhanced transcription of these antiviral ISGs and restricted virus propagation. These findings depict a novel IFN response mechanism by PML bodies in the cytosol and shed light on the complex sensing-regulatory network of PML bodies. IMPORTANCE PML bodies sit at the center stage of various important biological processes; however, the signal transduction networks of these macromolecular protein complexes remain enigmatic. The present study illustrates, in detail and for the first time, the course of signal receiving, processing, and implementation by PML bodies in response to IFN and virus infection. It shows that PML body constitutive component Sp100A was phosphorylated on Ser188 by IFN signaling through the PI3K pathway in the cytosol, cotranslocated into the nucleus with PKM2, enriched on the promoter regions of essential antiviral ISGs such as those coding for IFI16, RIG-I, OAS2, etc., and mediating their transcriptional activation.

Keywords