International Journal of Molecular Sciences (Jan 2017)

A Multiple Reaction Modelling Framework for Microbial Electrochemical Technologies

  • Tolutola Oyetunde,
  • Priyangshu M. Sarma,
  • Farrukh Ahmad,
  • Jorge Rodríguez

DOI
https://doi.org/10.3390/ijms18010086
Journal volume & issue
Vol. 18, no. 1
p. 86

Abstract

Read online

A mathematical model for the theoretical evaluation of microbial electrochemical technologies (METs) is presented that incorporates a detailed physico-chemical framework, includes multiple reactions (both at the electrodes and in the bulk phase) and involves a variety of microbial functional groups. The model is applied to two theoretical case studies: (i) A microbial electrolysis cell (MEC) for continuous anodic volatile fatty acids (VFA) oxidation and cathodic VFA reduction to alcohols, for which the theoretical system response to changes in applied voltage and VFA feed ratio (anode-to-cathode) as well as membrane type are investigated. This case involves multiple parallel electrode reactions in both anode and cathode compartments; (ii) A microbial fuel cell (MFC) for cathodic perchlorate reduction, in which the theoretical impact of feed flow rates and concentrations on the overall system performance are investigated. This case involves multiple electrode reactions in series in the cathode compartment. The model structure captures interactions between important system variables based on first principles and provides a platform for the dynamic description of METs involving electrode reactions both in parallel and in series and in both MFC and MEC configurations. Such a theoretical modelling approach, largely based on first principles, appears promising in the development and testing of MET control and optimization strategies.

Keywords