Radiation-Induced Synthesis and Superparamagnetic Properties of Ferrite Fe<sub>3</sub>O<sub>4</sub> Nanoparticles
Amel Zorai,
Abdelhafid Souici,
Daniel Adjei,
Diana Dragoe,
Eric Rivière,
Salim Ouhenia,
Mehran Mostafavi,
Jacqueline Belloni
Affiliations
Amel Zorai
Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, Algeria
Abdelhafid Souici
Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, Algeria
Daniel Adjei
Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, Bâtiment 349, 91405 Orsay, France
Diana Dragoe
Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Université Paris-Saclay, Bâtiment Henri Moissan, 19 Avenue des Sciences, 91400 Orsay, France
Eric Rivière
Institut de Chimie Moléculaire et des Matériaux d’Orsay, UMR 8182 CNRS, Université Paris-Saclay, Bâtiment Henri Moissan, 19 Avenue des Sciences, 91400 Orsay, France
Salim Ouhenia
Laboratoire de Physico-Chimie des Matériaux et Catalyse, Faculté des Sciences Exactes, Université de Bejaia, Bejaia 06000, Algeria
Mehran Mostafavi
Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, Bâtiment 349, 91405 Orsay, France
Jacqueline Belloni
Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, Bâtiment 349, 91405 Orsay, France
Ultra-small magnetic Fe3O4 nanoparticles are successfully synthesized in basic solutions by using the radiolytic method of the partial reduction in FeIII in the presence of poly-acrylate (PA), or by using the coprecipitation method of FeIII and FeII salts in the presence of PA. The optical, structural, and magnetic properties of the nanoparticles were examined using UV–Vis absorption spectroscopy, high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and SQUID magnetization measurements. The HRTEM and XRD analysis confirmed the formation of ultra-small magnetite nanoparticles in a spinel structure, with a smaller size for radiation-induced particles coated by PA (5.2 nm) than for coprecipitated PA-coated nanoparticles (11 nm). From magnetization measurements, it is shown that the nanoparticles are superparamagnetic at room temperature. The magnetization saturation value Ms = 50.1 A m2 kg−1 of radiation-induced nanoparticles at 60 kGy is higher than Ms = 18.2 A m2 kg−1 for coprecipitated nanoparticles. Both values are compared with nanoparticles coated with other stabilizers in the literature.