Progress in Earth and Planetary Science (Nov 2021)

Infiltration metasomatism of the Allende coarse-grained calcium-aluminum-rich inclusions

  • Alexander N. Krot,
  • Michail I. Petaev,
  • Kazuhide Nagashima

DOI
https://doi.org/10.1186/s40645-021-00437-4
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 37

Abstract

Read online

Abstract We report on the mineralogy, petrography, and O and Al-Mg isotopic systematics of secondary mineralization in the metasomatically altered igneous Ca,Al-rich inclusions (CAIs) [compact type A (CTA), B1, B2, forsterite-bearing B (FoB), and C] from the CV3 carbonaceous chondrite Allende. This alteration affected mainly melilite, and to a lesser degree anorthite, and resulted in the formation of a variety of secondary minerals, including adrianite, Al-diopside, andradite, anorthite, calcite, celsian, clintonite, corundum, dmisteinbergite, ferroan olivine, ferroan monticellite, ferroan Al-diopside, forsterite, grossular, heazlewoodite, hedenbergite, hutcheonite, kushiroite, margarite, monticellite, Na-melilite, nepheline, pentlandite, pyrrhotite, sodalite, spinel, tilleyite, wadalite, and wollastonite. The secondary mineral assemblages are mainly defined by chemical compositions of the primary melilite replaced and elements introduced by an aqueous fluid. Gehlenitic melilite (Åk3 Ma after crystallization of CAIs with the canonical (26Al/27Al)0 of (5.25±0.02)×10-5; 26Mg* in grossular was inherited from the primary melilite and provide no chronological significance. Oxygen isotopic heterogeneity of primary minerals in the Allende CAIs at least partly is due to isotopic exchange with an aqueous fluid that largely affected melilite, anorthite, perovskite, Zr- and Sc-rich oxides and silicates, and possibly very Ti-rich fassaite.