Vehicles (Jul 2024)
External Human–Machine Interfaces of Autonomous Vehicles: Insights from Observations on the Behavior of Game Players Driving Conventional Cars in Mixed Traffic
Abstract
External human–machine interfaces (eHMIs) may be useful for communicating the intention of an autonomous vehicle (AV) to road users, but it is questionable whether an eHMI is effective in guiding the actual behavior of road users, as intended by the eHMI. To address this question, we developed a Unity game in which the player drove a conventional car and the AVs were operating with eHMIs. We examined the effects of different eHMI designs—namely, textual, graphical, and anthropomorphic—on the driving behavior of a player in a gaming environment, and compared it to one with no eHMI. Participants (N = 18) had to follow a specified route, using the typical keys for PC games. They encountered AVs with an eHMI placed on the rear window. Five scenarios were simulated for the specified routes: school safety zone; traffic island; yellow traffic light; waiting for passengers; and an approaching e-scooter. All scenarios were repeated three times (a total of 15 sessions per participant), and the eHMI was randomly generated among the four options. The behavior was determined by observing the number of violations in combination with keystrokes, fixations, and saccades. Their subjective evaluations of the helpfulness of the eHMI and their feelings about future AVs revealed their attitudes. Results showed that a total of 45 violations occurred, the most frequent one being exceeding the speed limit in the school safety zones (37.8%) when the eHMI was textual, anthropomorphic, graphical, and when there was no eHMI, in decreasing order; the next was collisions (33.3%), when the eHMI was anthropomorphic, none, or graphical. The rest were ignoring the red light (13.3%), crossing the stop line (13.3%), and violation of the central line (2.2%). More violations occurred when the eHMI was set to anthropomorphic, followed by no eHMI, graphical, and textual eHMI. The helpfulness of the five scenarios scored high (5.611 to 6.389) on a seven-point Likert scale, and there was no significant difference for the scenarios. Participants felt more positive about the future of AVs after their gaming experience (p = 0.049). We conclude that gazing at unfamiliar and ambiguous information on eHMIs may cause a loss of driver attention and control. We propose an adaptive approach in terms of timing and distance depending on the behavior of other road users.
Keywords