Heliyon (Apr 2024)

Based on the prognosis model of immunogenes, the prognosis model was constructed to predict the invasion of immune genes and immune cells related to primary liver cancer and its experimental validation

  • Yu-Ping Yang,
  • Min Bai,
  • Yin-Xia Cheng,
  • Xin Feng,
  • Yan-Ying Zhang,
  • Yuan-Yuan Zhang,
  • Meng-Ya Liu,
  • Yong-Qiang Duan

Journal volume & issue
Vol. 10, no. 7
p. e27362

Abstract

Read online

Background: Primary liver cancer (PLC) is a prevalent malignancy of the digestive system characterized by insidious symptom onset and a generally poor prognosis. Recent studies have highlighted a significant correlation between the initiation and prognosis of liver cancer and the immune function of PLC patients. Purpose: Revealing the expression of PLC-related immune genes and the characteristics of immune cell infiltration provides assistance for the analysis of clinical pathological parameters and prognosis of PLC patients. Methods: PLC-related differentially expressed genes (DEGs) with a median absolute deviation (MAD > 0.5) were identified from TCGA and GEO databases. These DEGs were intersected with immune-related genes (IRGs) from the ImmPort database to obtain PLC-related IRGs. The method of constructing a prognostic model through immune-related gene pairs (IRGPs) is used to obtain IRGPs and conduct the selection of central immune genes. The central immune genes obtained from the selection of IRGPs are validated in PLC. Subsequently, the relative proportions of 22 types of immune cells in different immune risk groups are evaluated, and the differential characteristics of PLC-related immune cells are verified through animal experiments. Results: Through database screening and the construction of an IRGP prognosis model, 84 pairs of IRGPs (P < 0.001) were ultimately obtained. Analysis of these 84 IRGPs revealed 11 central immune genes related to PLC, showing differential expression in liver cancer tissues compared to normal liver tissues. Results from the CiberSort platform indicate differential expression of immune cells such as naive B cells, macrophages, and neutrophils in different immune risk groups. Animal experiments demonstrated altered immune cell proportions in H22 tumor-bearing mice, validating findings from peripheral blood and spleen homogenate analyses. Conclusion: Our study successfully predicted and validated PLC-related IRGs and immune cells, suggesting their potential as prognostic indicators and therapeutic targets for PLC.

Keywords