MoS<sub>2</sub> with Stable Photoluminescence Enhancement under Stretching via Plasmonic Surface Lattice Resonance
Yen-Ju Chiang,
Tsan-Wen Lu,
Pin-Ruei Huang,
Shih-Yen Lin,
Po-Tsung Lee
Affiliations
Yen-Ju Chiang
Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan
Tsan-Wen Lu
Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan
Pin-Ruei Huang
Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan
Shih-Yen Lin
Research Center for Applied Sciences, Academia Sinica, No. 128, Sec. 2, Academia Rd, Taipei 11529, Taiwan
Po-Tsung Lee
Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Rm. 401 CPT Building, 1001 Ta-Hsueh Road, Hsinchu 300093, Taiwan
In this study, by combining a large-area MoS2 monolayer with silver plasmonic nanostructures in a deformable polydimethylsiloxane substrate, we theoretically and experimentally studied the photoluminescence (PL) enhancement of MoS2 by surface lattice resonance (SLR) modes of different silver plasmonic nanostructures. We also observed the stable PL enhancement of MoS2 by silver nanodisc arrays under differently applied stretching strains, caused by the mechanical holding effect of the MoS2 monolayer. We believe the results presented herein can guarantee the possibility of stably enhancing the light emission of transition metal dichalcogenides using SLR modes in a deformable platform.