Sensors (Sep 2019)

Multi-Sensor Fusion for Activity Recognition—A Survey

  • Antonio A. Aguileta,
  • Ramon F. Brena,
  • Oscar Mayora,
  • Erik Molino-Minero-Re,
  • Luis A. Trejo

DOI
https://doi.org/10.3390/s19173808
Journal volume & issue
Vol. 19, no. 17
p. 3808

Abstract

Read online

In Ambient Intelligence (AmI), the activity a user is engaged in is an essential part of the context, so its recognition is of paramount importance for applications in areas like sports, medicine, personal safety, and so forth. The concurrent use of multiple sensors for recognition of human activities in AmI is a good practice because the information missed by one sensor can sometimes be provided by the others and many works have shown an accuracy improvement compared to single sensors. However, there are many different ways of integrating the information of each sensor and almost every author reporting sensor fusion for activity recognition uses a different variant or combination of fusion methods, so the need for clear guidelines and generalizations in sensor data integration seems evident. In this survey we review, following a classification, the many fusion methods for information acquired from sensors that have been proposed in the literature for activity recognition; we examine their relative merits, either as they are reported and sometimes even replicated and a comparison of these methods is made, as well as an assessment of the trends in the area.

Keywords