Applied Sciences (Oct 2022)

Dynamic Characteristic Analysis of Permanent Magnet Brushless DC Motor System with Rolling Rotor

  • Yi Wan,
  • Zhengyang Li,
  • Yan Xia,
  • Fangbin Gong,
  • Fei Chen

DOI
https://doi.org/10.3390/app121910049
Journal volume & issue
Vol. 12, no. 19
p. 10049

Abstract

Read online

With the wide application of permanent magnet brushless DC motors (BLDCMs) in home appliances and electric vehicles, there is increasing demand for BLDCMs with low vibration and noise. This paper aims to study the dynamic characteristics of a type of BLDCM with a rolling rotor. Firstly, a dynamic model of a BLDCM with eighteen degrees of freedom (18 DOFs) is built, for which the electromagnetic force and the oil-film force of the sliding bearing are considered. Then, the system responses are solved by Runge–Kutta numerical method, and the effects of the rotational speed, bearing backlash and eccentric distance of the rolling rotor on the dynamic response are analyzed in detail. The time history, frequency plot, axis trajectory diagram and phase portrait are introduced to discuss the dynamic behavior of the motor system. Analysis results show that eccentric force increases obviously with increasing rotational speed or eccentric distance, which can change the dynamic response through suppressing the electromagnetic force. The effect of bearing clearance on the rotor and stator is negatively correlated. Therefore, system parameters should be determined properly to improve the running performance of the motor system. Numerical results can provide a useful guide for the design and vibration control of such motor systems.

Keywords