Sensors (Aug 2006)

Fiber-Optic Biosensor Employing Alexa-Fluor Conjugated Antibody for Detection of Escherichia coli O157:H7 from Ground Beef in Four Hours

  • Arun K. Bhunia,
  • Su-I Tu,
  • Joe Uknalis,
  • Tao Geng

DOI
https://doi.org/10.3390/s6080796
Journal volume & issue
Vol. 6, no. 8
pp. 796 – 807

Abstract

Read online

Fiber optic biosensor has a great potential to meet the need for rapid, sensitive,and real-time microbial detection systems. We developed an antibody-based fiber-opticbiosensor to rapidly detect low levels of Escherichia coli O157:H7 cells in ground beef. Theprinciple of the sensor is a sandwich immunoassay using an antibody which is specific forE. coli O157:H7. A polyclonal antibody was first immobilized on polystyrene fiberwaveguides through a biotin-streptavidin reaction that served as a capture antibody. AnAlexa Fluor 647 dye-labeled antibody to E. coli O157:H7 was used to detect cells andgenerate a specific fluorescent signal, which was acquired by launching a 635 nm laser-lightfrom an Analyte-2000. Fluorescent molecules within several hundred nanometers of thefiber were excited by an evanescent wave, and a portion of the emission light fromfluorescent dye transmitted by the fiber and collected by a photodetector at wavelengths of670 to 710 nm quantitatively. This immunosensor was specific for E. coli O157:H7compared with multiple other foodborne bacteria. In addition, the biosensor was able todetect as low as 103 CFU/ml pure cultured E. coli O157:H7 cells grown in culture broth.Artificially inoculated E. coli O157:H7 at concentration of 1 CFU/ml in ground beef couldbe detected by this method after only 4 hours of enrichment.

Keywords