Geochemistry, Geophysics, Geosystems (Aug 2023)

Geometrical Relations Between Slab Dip and the Location of Volcanic Arcs and Back‐Arc Spreading Centers

  • Goeun Ha,
  • Laurent G. J. Montési,
  • Wenlu Zhu

DOI
https://doi.org/10.1029/2023GC010997
Journal volume & issue
Vol. 24, no. 8
pp. n/a – n/a

Abstract

Read online

Abstract A global study of subduction zone dynamics indicates that the thermal structure of the overriding plate may control arc location. A fast convergence rate and a steep slab dip bring a hotter mantle further into the wedge corner, forming arc volcanoes closer to the trench. Separately, laboratory and numerical experiments showed that the development of a back‐arc spreading center (BASC) is driven by the migration of the subducting hinge, especially following changes in the slab geometry. As both arc location and the deformation regime of the overriding plate depend on slab kinematics and geometry, we investigate the possible correlations between BASC, the position of volcanic arcs, and slab dip at the scale of individual subduction zones. To do this, we compare the distance from trench to arc and trench to BASC at the Mariana, Scotia, Vanuatu, Tonga, and Kermadec subduction zones. In most cases, the arc and BASC are closer to the trench when the slab is dipping steeply. The correlation could result from an interplay between progressive changes in slab geometry and overriding plate deformation. This assumes, on the one hand, that the isotherm at the apex of which the arc forms is tied to a constant slab decoupling depth and, on the other hand, that back‐arc opening accommodates a change in slab dip. As slab dip decreases, both the BASC and the apex of the isotherm controlling the melt focusing move further from the trench. The observed trends are consistent with a slab anchored at 660 km depth.

Keywords