Discrete Mathematics & Theoretical Computer Science (Dec 2016)

The Complexity of Pattern Matching for $321$-Avoiding and Skew-Merged Permutations

  • Michael H. Albert,
  • Marie-Louise Lackner,
  • Martin Lackner,
  • Vincent Vatter

DOI
https://doi.org/10.46298/dmtcs.1308
Journal volume & issue
Vol. Vol. 18 no. 2, Permutation..., no. Permutation Patterns

Abstract

Read online

The Permutation Pattern Matching problem, asking whether a pattern permutation $\pi$ is contained in a permutation $\tau$, is known to be NP-complete. In this paper we present two polynomial time algorithms for special cases. The first algorithm is applicable if both $\pi$ and $\tau$ are $321$-avoiding; the second is applicable if $\pi$ and $\tau$ are skew-merged. Both algorithms have a runtime of $O(kn)$, where $k$ is the length of $\pi$ and $n$ the length of $\tau$.

Keywords