Mathematics (Aug 2020)

From Hahn–Banach Type Theorems to the Markov Moment Problem, Sandwich Theorems and Further Applications

  • Octav Olteanu

DOI
https://doi.org/10.3390/math8081328
Journal volume & issue
Vol. 8, no. 8
p. 1328

Abstract

Read online

The aim of this review paper is to recall known solutions for two Markov moment problems, which can be formulated as Hahn–Banach extension theorems, in order to emphasize their relationship with the following problems: (1) pointing out a previously published sandwich theorem of the type f ≤ h ≤ g, where f, −g are convex functionals and h is an affine functional, over a finite-simplicial set X, and proving a topological version for this result; (2) characterizing isotonicity of convex operators over arbitrary convex cones; giving a sharp direct proof for one of the generalizations of Hahn–Banach theorem applied to the isotonicity; (3) extending inequalities assumed to be valid on a small subset, to the entire positive cone of the domain space, via Krein–Milman or Carathéodory’s theorem. Thus, we point out some earlier, as well as new applications of the Hahn–Banach type theorems, emphasizing the topological versions of these applications.

Keywords