The ArfGAP ASAP1 Controls Actin Stress Fiber Organization via Its N-BAR Domain
Anjelika Gasilina,
Teresa Vitali,
Ruibai Luo,
Xiaoying Jian,
Paul A. Randazzo
Affiliations
Anjelika Gasilina
Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC 20007, USA
Teresa Vitali
Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
Ruibai Luo
Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
Xiaoying Jian
Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA
Paul A. Randazzo
Section on Regulation of Ras Superfamily, Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg. 37, Rm. 2042, Bethesda, MD 20892, USA; Corresponding author
Summary: ASAP1 is a multi-domain ArfGAP that controls cell migration, spreading, and focal adhesion dynamics. Although its GAP activity contributes to remodeling of the actin cytoskeleton, it does not fully explain all cellular functions of ASAP1. Here we find that ASAP1 regulates actin filament assembly directly through its N-BAR domain and controls stress fiber maintenance. ASAP1 depletion caused defects in stress fiber organization. Conversely, overexpression of ASAP1 enhanced actin remodeling. The BAR-PH fragment was sufficient to affect actin. ASAP1 with the BAR domain replaced with the BAR domain of the related ACAP1 did not affect actin. The BAR-PH tandem of ASAP1 bound and bundled actin filaments directly, whereas the presence of the ArfGAP and the C-terminal linker/SH3 domain reduced binding and bundling of filaments by BAR-PH. Together these data provide evidence that ASAP1 may regulate the actin cytoskeleton through direct interaction of the BAR-PH domain with actin filaments. : Biological Sciences; Cell Biology; Functional Aspects of Cell Biology Subject Areas: Biological Sciences, Cell Biology, Functional Aspects of Cell Biology