Journal of Advances in Modeling Earth Systems (Mar 2017)
Land surface‐precipitation feedback analysis for a landfalling monsoon depression in the Indian region
Abstract
Abstract A series of numerical experiments are carried out to investigate the sensitivity of a landfalling monsoon depression to land surface conditions using the Weather Research and Forecasting (WRF) model. Results suggest that precipitation is largely modulated by moisture influx and precipitation efficiency. Three cloud microphysical schemes (WSM6, WDM6, and Morrison) are examined, and Morrison is chosen for assessing the land surface‐precipitation feedback analysis, owing to better precipitation forecast skills. It is found that increased soil moisture facilitates Moisture Flux Convergence (MFC) with reduced moisture influx, whereas a reduced soil moisture condition facilitates moisture influx but not MFC. A higher Moist Static Energy (MSE) is noted due to increased evapotranspiration in an elevated moisture scenario which enhances moist convection. As opposed to moist surface, sensible heat dominates in a reduced moisture scenario, ensued by an overall reduction in MSE throughout the Planetary Boundary Layer (PBL). Stability analysis shows that Convective Available Potential Energy (CAPE) is comparable in magnitude for both increased and decreased moisture scenarios, whereas Convective Inhibition (CIN) shows increased values for the reduced moisture scenario as a consequence of drier atmosphere leading to suppression of convection. Simulations carried out with various fixed soil moisture levels indicate that the overall precipitation features of the storm are characterized by initial soil moisture condition, but precipitation intensity at any instant is modulated by soil moisture availability. Overall results based on this case study suggest that antecedent soil moisture plays a crucial role in modulating precipitation distribution and intensity of a monsoon depression.
Keywords