Scientific Reports (Dec 2021)

LC–MS peak assignment based on unanimous selection by six machine learning algorithms

  • Hiroaki Ito,
  • Takashi Matsui,
  • Ryo Konno,
  • Makoto Itakura,
  • Yoshio Kodera

DOI
https://doi.org/10.1038/s41598-021-02899-4
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Recent mass spectrometry (MS)-based techniques enable deep proteome coverage with relative quantitative analysis, resulting in increased identification of very weak signals accompanied by increased data size of liquid chromatography (LC)–MS/MS spectra. However, the identification of weak signals using an assignment strategy with poorer performance results in imperfect quantification with misidentification of peaks and ratio distortions. Manually annotating a large number of signals within a very large dataset is not a realistic approach. In this study, therefore, we utilized machine learning algorithms to successfully extract a higher number of peptide peaks with high accuracy and precision. Our strategy evaluated each peak identified using six different algorithms; peptide peaks identified by all six algorithms (i.e., unanimously selected) were subsequently assigned as true peaks, which resulted in a reduction in the false-positive rate. Hence, exact and highly quantitative peptide peaks were obtained, providing better performance than obtained applying the conventional criteria or using a single machine learning algorithm.