Life (Aug 2020)

Biologic Impact of Different Ultra-Low-Fluence Irradiations in Human Fibroblasts

  • Masao Suzuki,
  • Yukio Uchihori,
  • Hisashi Kitamura,
  • Masakazu Oikawa,
  • Teruaki Konishi

DOI
https://doi.org/10.3390/life10080154
Journal volume & issue
Vol. 10, no. 8
p. 154

Abstract

Read online

In this study, we aimed to evaluate the cellular response of healthy human fibroblasts induced by different types of ultra-low-fluence radiations, including gamma rays, neutrons and high linear energy transfer (LET) heavy ions. NB1RGB cells were pretreated with ultra-low-fluence radiations (~0.1 cGy/7–8 h) of 137Cs gamma rays, 241Am–Be neutrons, helium, carbon and iron ions before being exposed to an X-ray-challenging dose (1.5 Gy). Helium (LET = 2.3 keV/µm), carbon (LET = 13.3 keV/µm) and iron (LET = 200 keV/µm) ions were generated with the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. No differences in cell death—measured by colony-forming assay—were observed regardless of the radiation type applied. In contrast, mutation frequency, which was detected through cell transformation into 6-thioguanine resistant clones, was 1.9 and 4.0 times higher in cells pretreated with helium and carbon ions, respectively, compared to cells exposed to X-ray-challenging dose alone. Moreover, cells pretreated with iron ions or gamma-rays showed a mutation frequency similar to cells exposed to X-ray-challenging dose alone, while cells pretreated with neutrons had 0.15 times less mutations. These results show that cellular responses triggered by ultra-low-fluence irradiations are radiation-quality dependent. Altogether, this study shows that ultra-low-fluence irradiations with the same level as those reported in the International Space Station are capable of inducing different cellular responses, including radio-adaptive responses triggered by neutrons and genomic instability mediated by high-LET heavy ions, while electromagnetic radiations (gamma rays) seem to have no biologic impact.

Keywords