The application of silica aerogel has been limited because of its poor mechanical properties. In order to expand the application scope of silica aerogel, this study fabricated an ultra-flexible conductive silica aerogel as a multiparameter sensor. The sample is fabricated by introducing poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) on a base of ultra-flexible silica aerogel, which was prepared by a diene synthesis reaction at atmospheric pressure. The pressure, temperature, and humidity can be converted into electrical signals. The pressure sensitivity can reach up to 54.88 kPa−1, and the detection limit is as low as 5 Pa. The temperature resolution is up to 0.1 K, and the response time of humidity is within 4 s. More importantly, the developed multiparameter sensor can be self-powered to realize multiparameter sensing of pressure, temperature, and humidity. The ultra-flexible conductive silica aerogel is a promising candidate for monitoring human activities and fire-affected areas.