Forests (Sep 2019)

Spatial Genetic Patterns and Distribution Dynamics of the Rare Oak <i>Quercus chungii</i>: Implications for Biodiversity Conservation in Southeast China

  • Xiao-Long Jiang,
  • Gangbiao Xu,
  • Min Deng

DOI
https://doi.org/10.3390/f10090821
Journal volume & issue
Vol. 10, no. 9
p. 821

Abstract

Read online

A rapidly changing climate and frequent human activity influences the distribution and community structure of forests. Increasing our knowledge about the genetic diversity and distribution patterns of trees is helpful for forest conservation and management. In this study, nSSRs (nuclear simple sequence repeats) were integrated with a species distribution model (SDM) to investigate the spatial genetic patterns and distribution dynamics of Quercus chungii F.P.Metcalf, a rare oak in the subtropics of southeast China. A total of 188 individuals from 11 populations distributed across the natural range of Q. chungii were genotyped using nine nSSRs. The STRUCTURE analysis indicated that genetic admixture was present in all populations, but the population genetic variation and genetic differentiation were related to their geographical distributions. The SDM result indicated that Q. chungii retreated to the Nanling Mountains and adjacent areas during the Last Glacial Maximum (LGM) period, which corresponds to higher genetic diversity for populations in this region. Landscape genetic analysis showed that the Nanling Mountains served as a corridor for organism dispersal at the glacial and interglacial periods within the Quaternary. Based on these results, we propose that establishing nature reserves to protect the ecological corridor across the Nanling Mountains is necessary for the conservation of regional species genetic diversity, as well as the ecosystem of evergreen broadleaved forests in southern China. The study combines species distribution models and genetic diversity to provide new insight into biodiversity conservation and forest management under future climate change.

Keywords