eLife (Oct 2019)

Structural diversity of oligomeric β-propellers with different numbers of identical blades

  • Evgenia Afanasieva,
  • Indronil Chaudhuri,
  • Jörg Martin,
  • Eva Hertle,
  • Astrid Ursinus,
  • Vikram Alva,
  • Marcus D Hartmann,
  • Andrei N Lupas

DOI
https://doi.org/10.7554/eLife.49853
Journal volume & issue
Vol. 8

Abstract

Read online

β-Propellers arise through the amplification of a supersecondary structure element called a blade. This process produces toroids of between four and twelve repeats, which are almost always arranged sequentially in a single polypeptide chain. We found that new propellers evolve continuously by amplification from single blades. We therefore investigated whether such nascent propellers can fold as homo-oligomers before they have been fully amplified within a single chain. One- to six-bladed building blocks derived from two seven-bladed WD40 propellers yielded stable homo-oligomers with six to nine blades, depending on the size of the building block. High-resolution structures for tetramers of two blades, trimers of three blades, and dimers of four and five blades, respectively, show structurally diverse propellers and include a novel fold, highlighting the inherent flexibility of the WD40 blade. Our data support the hypothesis that subdomain-sized fragments can provide structural versatility in the evolution of new proteins.

Keywords