Osteoarthritis and Cartilage Open (Jun 2023)

Chondrocyte primary cilia lengthening and shortening in response to mediators of osteoarthritis; a role for integrin α1β1 and focal adhesions

  • Lauren B. Stam,
  • Andrea L. Clark

Journal volume & issue
Vol. 5, no. 2
p. 100357

Abstract

Read online

Objective: Integrin α1β1 protects against osteoarthritis when it is upregulated in the early stages of disease, however, the mechanism behind this is currently unknown. Hypo-osmotic stress, interleukin-1 (IL-1) and transforming growth factor β (TGFβ) influence chondrocyte signaling and are important mediators of osteoarthritis. Evidence for primary cilia as a signaling hub for these factors and the involvement of the F-actin cytoskeleton in this response is growing. The purpose of this study was to investigate the role of integrin α1β1 in the response of primary cilia and the F-actin cytoskeleton to these osteoarthritic mediators. Design: Primary cilia length and the number of F-actin peaks were measured in ex vivo wild type and itga1-null chondrocytes in response to hypo-osmotic stress, IL-1, and TGFβ alone or in combination, and with or without focal adhesion kinase inhibitor. Results: We show that integrin α1β1 and focal adhesions are necessary for cilial lengthening and increases in F-actin peaks with hypo-osmotic stress and IL-1, but are not required for cilial shortening with TGFβ. Furthermore, we established that the chondrocyte primary cilium has a resting length of 2.4 ​μm, a minimum length of 2.1 ​μm corresponding to the thickness of the pericellular matrix, and a maximum length of 3.0 ​μm. Conclusions: While integrin α1β1 is not necessary for the formation of chondrocyte primary cilia and cilial shortening in response to TGFβ, it is necessary for the mediation of cilial lengthening and the formation of F-actin peaks in response to hypo-osmotic stress and IL-1.

Keywords