Scientific Reports (Jul 2023)
High-resolution three-dimensional structural determination of unstained double-gyroid block copolymers through scanning transmission electron microscopy
Abstract
Abstract Block copolymer-based multicomponent materials have garnered considerable attention because of tunable properties due to their various constituents. The use of electron tomography through transmission electron microscopy (TEM) for the three-dimensional (3D) imaging of stained block copolymers is an established approach for investigating structure-property relationships. Recently, scanning transmission electron microscopy (STEM) with an annular dark-field (ADF) detector has emerged as a method for the 3D structural analysis of unstained block copolymers. However, because of a lack of electron contrast, only a few low-resolution 3D reconstructions were reported for light elements. Herein, we report the first 3D structural analysis of a 200-nm-thick film composed of unstained double-gyroid block copolymers-polystyrene-b-poly(2-vinylpyridine) (PS-P2VP)-at a resolution of 8.6 nm through spherical aberration Cs-corrected STEM. At this resolution, P2VP molecules can be distinguished from PS molecules in z-contrast 3D reconstructions obtained both experimentally and theoretically. The 3D reconstructions revealed structural differences between stained and unstained specimens.