Poultry Science (Sep 2023)

Peroxisome proliferator-activated receptor gamma (PPARγ) activation: a potential treatment for ascites syndrome in broiler chickens

  • Mahin Rahimi,
  • Shaban Rahimi,
  • Mohammad Amir Karimi Torshizi,
  • Mohsen Sharafi,
  • Ali Akbar Masoudi,
  • Jesse L. Grimes

Journal volume & issue
Vol. 102, no. 9
p. 102859

Abstract

Read online

ABSTRACT: Ascites (serous fluid accumulation in the abdominal cavity) has been observed worldwide in fast growing broilers. Pulmonary vascular remodeling is an important pathological feature of broiler ascites syndrome. Peroxisome proliferators-activated receptor gamma (PPARγ) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) are expressed in pulmonary vascular endothelial cells and vascular smooth muscle cells (VSMC) where they participate in the regulation of normal pulmonary vascular function. The objective of the present study was to investigate the effects of omega-3 fatty acids (found in fish oil) and pioglitazone (PIO) as natural and synthetic PPARγ ligands supplementation on PPARγ and PGC-1α expression in the prevention of pulmonary arterial hypertension (PAH) syndrome in broiler chickens. The experiment was conducted with 4 treatment groups: 1) negative control, normal temperature conditions with basal diet; 2) positive control, low-temperature conditions with basal diet; 3) positive control + 10 mg PIO/kg of weight/d and 4) positive control + 1% FO. Each treatment had 5 replicates. Ascites heart index (RV/TV) was significantly (P < 0.05) reduced in chickens receiving FO (0.20) and PIO (0.21) compared to the positive control group (0.26). The addition of PIO in broilers under cold-induced ascites significantly increased the expression of PPARγ (9.44) and PGC-1α (5.81) genes in lung tissue compared to the negative control group (1.03, P < 0.05). Proliferative indexes of VSMC in pulmonary arteries such as PMT, PIT, and percentage wall thickness were significantly elevated in positive control group, indicating that pulmonary vascular remodeling occurred following VSMC proliferation in ascites. The vessel internal diameter was increased in FO and PIO groups. Based on these results, activation and expression of PPARγ and PGC-1α genes as a critical regulator of pulmonary artery smooth muscle cell using ligands, especially PIO, can be effective in reducing the incidence of PAH in broiler chickens.

Keywords