Radiation Oncology (Oct 2018)
A novel model to correlate hydrogel spacer placement, perirectal space creation, and rectum dosimetry in prostate stereotactic body radiotherapy
Abstract
Abstract Background The SpaceOAR hydrogel is employed to limit rectal radiation dose during prostate radiotherapy. We identified a novel parameter – the product of angle θ and hydrogel volume – to quantify hydrogel placement. This parameter predicted rectum dosimetry and acute rectal toxicity in prostate cancer patients treated with stereotactic body radiotherapy to 36.25 Gy in 5 fractions. Methods Twenty men with low- and intermediate-risk prostate cancer underwent hydrogel placement from 2015 to 2017. Hydrogel symmetry was assessed on the CT simulation scan in 3 axial slices (midgland, 1 cm above midgland, 1 cm below midgland). Two novel parameters quantifying hydrogel placement – hydrogel volume and angle θ formed by the prostate, hydrogel, and rectum – were measured, and the normalized product of θ and hydrogel volume calculated. These were then correlated with perirectal distance, rectum maximum 1–3 cc point doses (rDmax 1–3 cc), and rectum volumes receiving 80–95% of the prescription dose (rV80–95%). Acute rectal toxicity was recorded per RTOG criteria. Results In 50% of patients, hydrogel placement was symmetric bilaterally to within 1 cm of midline in all three CT simulation scan axial slices. Lateral hydrogel asymmetry grade 2 was observed. Low grade rectal toxicity was observed in a third of men and resolved within 1 month of SBRT. Men who had these symptoms had higher rDmax 1 cc and smaller θ*hydrogel volume measurements. Conclusions Optimal hydrogel placement occurs at prostate midgland, midline. The novel parameter θ*hydrogel volume describes a large proportion of rectum dosimetric benefit derived from hydrogel placement, and can be used to assess the learning curve phenomenon for hydrogel placement.
Keywords