PLoS ONE (Jan 2022)

Gastropods underwent a major taxonomic turnover during the end-Triassic marine mass extinction event.

  • Mariel Ferrari,
  • Michael Hautmann

DOI
https://doi.org/10.1371/journal.pone.0276329
Journal volume & issue
Vol. 17, no. 11
p. e0276329

Abstract

Read online

Based on an exhaustive database of gastropod genera and subgenera during the Triassic-Jurassic transition, origination and extinction percentages and resulting diversity changes are calculated, with a particular focus on the end-Triassic mass extinction event. We show that gastropods suffered a loss of 56% of genera and subgenera during this event, which was higher than the average of marine life (46.8%). Among molluscs, gastropods were more strongly affected than bivalves (43.4%) but less than ammonoids, which were nearly annihilated. However, there were also pronounced differences among gastropod subclasses. The most strongly affected subclass was the Neritimorphia, which lost 72.7% of their Rhaetian genera; on the other extreme, the Heterobranchia remained nearly unaffected (11% loss). We analysed this extinction pattern with respect to larval development, palaeobiogeography, shell size, and anatomy and found that putative feeding of the pelagic larval stage, adaptation to tropical-temperate water temperatures, and flexibility of the mantle attachment were among the factors that might explain extinction resilience of heterobranchs during the end-Triassic crisis. Among molluscs, extinction magnitude roughly correlates with locomotion activity and thus metabolic rates. We suggest three potential kill mechanisms that could account for these observations: global warming, ocean acidification, and extinction of marine plankton. The end-Triassic extinction of gastropods therefore fits to proposed extinction scenarios for this event, which invoke the magmatic activity of the Central Atlantic Magmatic Province as the ultimate cause of death. With respect to gastropods, the effect of the end-Triassic mass extinction was comparable to that of the end-Permian mass extinction. Notably, Heterobranchia was relatively little affected by both events; the extinction resilience of this subclass during times of global environmental changes was therefore possibly a key aspect of their subsequent evolutionary success.