Advances in Nonlinear Analysis (Aug 2024)

Improved results on planar Klein-Gordon-Maxwell system with critical exponential growth

  • Wen Lixi,
  • Jin Peng

DOI
https://doi.org/10.1515/anona-2024-0025
Journal volume & issue
Vol. 13, no. 1
pp. 231 – 247

Abstract

Read online

This work is concerned with the following Klein-Gordon-Maxwell system: −Δu+V(x)u−(2ω+ϕ)ϕu=f(u),x∈R2,Δϕ=(ω+ϕ)u2,x∈R2,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-\left(2\omega +\phi )\phi u=f\left(u),\hspace{1.0em}& x\in {{\mathbb{R}}}^{2},\\ \Delta \phi =\left(\omega +\phi ){u}^{2},\hspace{1.0em}& x\in {{\mathbb{R}}}^{2},\end{array}\right. where ω>0\omega \gt 0 is a constant, u,ϕ:R2→Ru,\phi :{{\mathbb{R}}}^{2}\to {\mathbb{R}}, V∈C(R2,R)V\in {\mathcal{C}}\left({{\mathbb{R}}}^{2},{\mathbb{R}}), and f∈C(R,R)f\in {\mathcal{C}}\left({\mathbb{R}},{\mathbb{R}}) obeys exponential critical growth in the sense of the Trudinger-Moser inequality. We give some new sufficient conditions on ff, specifically related to exponential growth, to obtain the existence of nontrivial solutions. Our results improve and extend the previous results. In particular, we give a more precise estimation than the ones in the existing literature about the minimax level.

Keywords