Electronic Research Archive (Feb 2023)

Integrating artificial intelligence in cyber security for cyber-physical systems

  • Majed Alowaidi,
  • Sunil Kumar Sharma,
  • Abdullah AlEnizi,
  • Shivam Bhardwaj

DOI
https://doi.org/10.3934/era.2023097
Journal volume & issue
Vol. 31, no. 4
pp. 1876 – 1896

Abstract

Read online

Due to the complexities of systems thinking and the communication between independent Cyber-Physical Systems (CPSs) areas through accumulative expansion, several security threats are posed, such as deception of channels for information sharing, hardware aspects and virtual machines. CPSs have become increasingly complex, sophisticated, knowledgeable and fully independent. Because of their complex interactions between heterogeneous virtual and objective components, CPSs are subject to significant disturbances from intended and unintended events, making it extremely difficult for scientists to predict their behavior. This paper proposes a framework for Cyber-Physical Business Systems based on Artificial Intelligence (CPBS-AI). It summarizes several safety risks in distinct CPS levels, their threat modeling and the scientific challenges they face in building effective security solutions. This research provides a thorough overview of current state-of-the-art static capable of adapting detection and tracking approaches and their methodological limitations, namely, the difficulty of identifying runtime security attacks caused by hibernation or uncertainty. The way of identifying the threat and the security attacks in networks reduce the complexities in the communication in CPS. The negligible threats exhibit an inability to be identified, avoided and blocked by Intrusion Prevention Security Systems (IPSSs), and misbehavior in the database of the safety measures is analyzed. Neural Networks (NN) and Variable Structure Control (VSC) are designed to estimate attacks and prevent the risk of threats in tracking applications using a nonlinear monitoring system based on VSC. NN and the VSC evaluate the different attacks based on the nonlinear monitoring system. The evaluation of the proposed CPBS-AI is based on the request time analysis, accuracy, loss and reliability analysis. The overall effectiveness of the system is about 96.01%.

Keywords