Advances in Mechanical Engineering (Mar 2019)
Compliance analysis and lightweight design of a two-degree-of-freedom rotating head
Abstract
This article presents an approach for the compliance analysis and lightweight design of a two-degree-of-freedom rotating head by considering both gravity and joint/link compliances, which provides a comprehensive understanding on the posture adjustment mechanism of five-degree-of-freedom hybrid manipulator. A kinetostatic analysis is carried out to consider both externally applied wrench imposed upon the end-effector and gravity of all movable components. Then, a deflection analysis integrating both joint and link compliances and formulation of component compliance matrices are completed by using a semi-analytical approach. Finally, the lightweight design of two-degree-of-freedom rotating head is realized by considering the deflection constraints. This approach enables to effectively evaluate the deflections of end-effector caused by both payload and gravity under given operation conditions. Moreover, the established method provides reliable guidelines for the design of two-degree-of-freedom rotating head with superior static rigidities and dynamic behaviors.