ADMET and DMPK (Sep 2023)
Food and bile micelle binding of quaternary ammonium compounds
Abstract
Background and Purpose: Physiologically-based biopharmaceutics modeling (PBBM) has been widely used to predict the oral absorption of drugs. However, the prediction of food effects on oral drug absorption is still challenging, especially for negative food effects. Marked negative food effects have been reported in most cases of quaternary ammonium compounds (QAC). However, the mechanism has remained unclear. The purpose of the present study was to investigate the bile micelle and food binding of QACs as a mechanism of the negative food effect. Experimental Approach: Trospium (TRS), propantheline (PPT), and ambenonium (AMB) were selected as model QAC drugs. The oral absorption of these QACs has been reported to be reduced by 77% (TRS), > 66% (PPT), and 79% (AMB), when taken with food. The fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, containing 3 and 15 mM taurocholic acid, respectively) with or without FDA breakfast homogenate (BFH) were used as the simulated intestinal fluid. The unbound fraction (fu) of the QACs in these media was measured by dynamic dialysis. Key Results: The fu ratios (FeSSIF/ FaSSIF) were 0.67 (TRS), 0.47 (PPT), and 0.76 (AMB). When BFH was added to FeSSIF, it was reduced to 0.39 (TRS), 0.28 (PPT), and 0.59 (AMB). Conclusion: These results suggested that bile micelle and food binding play an important role in the negative food effect on the oral absorption of QACs.
Keywords