Journal of Intelligent Systems (Jan 2017)

IMIDB: An Algorithm for Indexed Mining of Incremental Databases

  • Fouad Mohammed M.,
  • Mostafa Mostafa G.M.,
  • Mashat Abdulfattah S.,
  • Gharib Tarek F.

DOI
https://doi.org/10.1515/jisys-2015-0107
Journal volume & issue
Vol. 26, no. 1
pp. 69 – 85

Abstract

Read online

Association rules provide important knowledge that can be extracted from transactional databases. Owing to the massive exchange of information nowadays, databases become dynamic and change rapidly and periodically: new transactions are added to the database and/or old transactions are updated or removed from the database. Incremental mining was introduced to overcome the problem of maintaining previously generated association rules in dynamic databases. In this paper, we propose an efficient algorithm (IMIDB) for incremental itemset mining in large databases. The algorithm utilizes the trie data structure for indexing dynamic database transactions. Performance comparison of the proposed algorithm to recently cited algorithms shows that a significant improvement of about two orders of magnitude is achieved by our algorithm. Also, the proposed algorithm exhibits linear scalability with respect to database size.

Keywords