Amino acid formula induces microbiota dysbiosis and depressive-like behavior in mice
Ji Hu,
Kaixin He,
Yifei Yang,
Chuan Huang,
Yiping Dou,
Hao Wang,
Guorong Zhang,
Jingyuan Wang,
Chaoshi Niu,
Guoqiang Bi,
Lan Zhang,
Shu Zhu
Affiliations
Ji Hu
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
Kaixin He
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
Yifei Yang
School of Data Science, University of Science and Technology of China, Hefei, China
Chuan Huang
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
Yiping Dou
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
Hao Wang
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
Guorong Zhang
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
Jingyuan Wang
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
Chaoshi Niu
The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
Guoqiang Bi
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
Lan Zhang
The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China; Corresponding author
Shu Zhu
Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China; School of Data Science, University of Science and Technology of China, Hefei, China; Corresponding author
Summary: Amino acid formula (AAF) is increasingly consumed in infants with cow’s milk protein allergy; however, the long-term influences on health are less described. In this study, we established a mouse model by subjecting neonatal mice to an amino acid diet (AAD) to mimic the feeding regimen of infants on AAF. Surprisingly, AAD-fed mice exhibited dysbiotic microbiota and increased neuronal activity in both the intestine and brain, as well as gastrointestinal peristalsis disorders and depressive-like behavior. Furthermore, fecal microbiota transplantation from AAD-fed mice or AAF-fed infants to recipient mice led to elevated neuronal activations and exacerbated depressive-like behaviors compared to that from normal chow-fed mice or cow’s-milk-formula-fed infants, respectively. Our findings highlight the necessity to avoid the excessive use of AAF, which may influence the neuronal development and mental health of children.