Journal of Cardiovascular Magnetic Resonance (Nov 2010)

Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold

  • Greiser Andreas,
  • Cochlin Lowri E,
  • Dall'Armellina Erica,
  • Ferreira Vanessa M,
  • Piechnik Stefan K,
  • Neubauer Stefan,
  • Robson Matthew D

DOI
https://doi.org/10.1186/1532-429X-12-69
Journal volume & issue
Vol. 12, no. 1
p. 69

Abstract

Read online

Abstract Background T1 mapping allows direct in-vivo quantitation of microscopic changes in the myocardium, providing new diagnostic insights into cardiac disease. Existing methods require long breath holds that are demanding for many cardiac patients. In this work we propose and validate a novel, clinically applicable, pulse sequence for myocardial T1-mapping that is compatible with typical limits for end-expiration breath-holding in patients. Materials and methods The Shortened MOdified Look-Locker Inversion recovery (ShMOLLI) method uses sequential inversion recovery measurements within a single short breath-hold. Full recovery of the longitudinal magnetisation between sequential inversion pulses is not achieved, but conditional interpretation of samples for reconstruction of T1-maps is used to yield accurate measurements, and this algorithm is implemented directly on the scanner. We performed computer simulations for 100 msIn-vivo myocardial T1-mapping using this method and the previous gold-standard (MOLLI) was performed in 10 healthy volunteers at 1.5T and 3T, 4 volunteers with contrast injection at 1.5T, and 4 patients with recent myocardial infarction (MI) at 3T. Results We found good agreement between the average ShMOLLI and MOLLI estimates for T1 In-vivo, ShMOLLI measurements required 9.0 ± 1.1 s (MOLLI = 17.6 ± 2.9 s). Average healthy myocardial T1 s by ShMOLLI at 1.5T were 966 ± 48 ms (mean ± SD) and 1166 ± 60 ms at 3T. In MI patients, the T1 in unaffected myocardium (1216 ± 42 ms) was similar to controls at 3T. Ischemically injured myocardium showed increased T1 = 1432 ± 33 ms (p in-vivo variability within ShMOLLI T1-maps was only 14% (1.5T) or 18% (3T) higher than the MOLLI maps, but the MOLLI acquisitions were twice longer than ShMOLLI acquisitions. Conclusion ShMOLLI is an efficient method that generates immediate, high-resolution myocardial T1-maps in a short breath-hold with high precision. This technique provides a valuable clinically applicable tool for myocardial tissue characterisation.