Indonesian Journal of Chemistry (Mar 2021)
Synthesis, Molecular Docking, and Evaluation of Some New Curcumin Analogs as Antimalarial Agents
Abstract
This research involves the synthesis, antimalarial evaluation, and molecular docking of several curcumin analogs. A total of six curcumin analog compounds were synthesized using aldol condensation using hydrochloric acid and sodium hydroxide catalysts. The synthesized compounds were elucidated using FTIR, 1H-NMR, 13C-NMR, and LC-MS/MS. Subsequently, all curcumin analogs were tested as an antimalarial agent against Plasmodium falciparum 3D7 strain, and their mechanism of action was evaluated through a molecular docking study. Six curcumin analogs, i.e. 2,6-bis(2-hydroxybenzylidene)cyclohexanone; 2,6-bis(2-hydroxybenzylidene)cyclopentanone; 1.5-bis(2-hydroxyphenyl)penta-1,4-diene-3-one; 2,6-bis(3-hydroxybenzylidene)cyclo-hexanone; 2,6-bis(3-hydroxybenzylidene)cyclopentanone; and 1,5-bis(3-hydroxy-phenyl)penta-1,4-diene-3-one have been successfully synthesized. In addition, 2,6-bis(2-hydroxybenzylidene) cyclopentanone demonstrated the lowest IC50 value and binding affinity of 0.04 µM and -7.6 kcal/mol, respectively. Based on molecular docking studies, this compound also showed the most potent antimalarial activity targeted at PfATP6.
Keywords