Earth and Space Science (Nov 2020)
Effect of Geometry and Fluid Viscosity on Dynamics of Fluid‐Filled Cracks: Insights From Analog Experimental Observations
Abstract
Abstract Fluid‐filled volumes in geological systems can change the local stress field in the host rock and may induce brittle deformation as well as crack propagation. Although the mechanisms relating fluid pressure perturbations and seismicity have been widely studied, the fluid‐solid interaction inside the crack of a host rock is still not well understood. An analog experimental model of fluid intrusion in cracks between planar layers has been developed to study stress conditions at the margins and tips. A combined high‐speed shadowgraph and a photoelasticity imaging system is used to visualize the fluid dynamics and induced stresses on the solid matrix. Cavitation, as well as bubble growth and collapse, occurs along the sawtooth crack margins, which produces a highly localized stress concentration to initiate new subcrack systems. The presence of the bubbles at the crack tip during fluid pressure perturbation can enhance crack propagation.
Keywords