International Journal of General Medicine (Jan 2018)

In vitro biofilm formation by Staphylococcus aureus isolated from wounds of hospital-admitted patients and their association with antimicrobial resistance

  • Neopane P,
  • Nepal HP,
  • Shrestha R,
  • Uehara O,
  • Abiko Y

Journal volume & issue
Vol. Volume 11
pp. 25 – 32

Abstract

Read online

Puja Neopane,1,2 Hari Prasad Nepal,3 Rojeet Shrestha,4 Osamu Uehara,5 Yoshihiro Abiko2 1Department of Microbiology, Chitwan Medical College and Teaching Hospital, Bharatpur, Nepal; 2Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Japan; 3Department of Microbiology, Trinity School of Medicine, Kingstown, St. Vincent and the Grenadines; 4School of Medicine, Washington University of Barbados, St. Philip, Barbados; 5Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, Health Sciences University of Hokkaido, Tobetsu, Japan Introduction: Staphylococcus aureus including methicillin-resistant S. aureus (MRSA) has the propensity to form biofilms, and causes significant mortality and morbidity in the patients with wounds. Our aim was to study the in vitro biofilm-forming ability of S. aureus isolated from wounds of hospitalized patients and their association with antimicrobial resistance. Materials and methods: Forty-three clinical isolates of S. aureus were obtained from 150 pus samples using standard microbiological techniques. Biofilm formation in these isolates was detected by tissue culture plate (TCP) method and tube adherence method (TM). Antimicrobial susceptibility test was performed using the modified Kirby–Bauer disk diffusion method as per Clinical and Laboratory Standards Institute guidelines. MRSA was detected using the cefoxitin disk test.Results: Biofilm formation was observed in 30 (69.8%) and 28 (65.1%) isolates of S. aureus via TCP method and TM, respectively. Biofilm-producing S. aureus exhibited a higher incidence of antimicrobial resistance when compared with the biofilm nonproducers (P<0.05). Importantly, 86.7% of biofilm-producing S. aureus were multidrug resistant (MDR), whereas all the biofilm nonproducers were non-MDR (P<0.05). Large proportions (43.3%) of biofilm producers were identified as MRSA; however, none of the biofilm nonproducers were found to be MRSA (P<0.05). Conclusion: Both the in vitro methods showed that S. aureus isolated from wound infection of hospitalized patients have high degree of biofilm-forming ability. Biofilm-producing strains have very high tendency to exhibit antimicrobial resistance, multidrug resistance and methicillin resistance. Regular surveillance of biofilm formation by S. aureus and their antimicrobial resistance profile may lead to the early treatment of the wound infection. Keywords: biofilm, multidrug resistant, methicillin-resistant Staphylococcus aureus

Keywords