Energies (Mar 2018)

A Network Flow Model for Price-Responsive Control of Deferrable Load Profiles

  • Juliano Camargo,
  • Fred Spiessens,
  • Chris Hermans

DOI
https://doi.org/10.3390/en11030613
Journal volume & issue
Vol. 11, no. 3
p. 613

Abstract

Read online

This paper describes a minimum cost network flow model for the aggregated control of deferrable load profiles. The load aggregator responds to indicative energy price information and uses this model to formulate and submit a flexibility bid to a high-resolution real-time balancing market, as proposed by the SmartNet project. This bid represents the possibility of the cluster of deferrable loads to deviate from the scheduled consumption, in case the bid is accepted. When formulating this bid, the model is able to take into account the discretized power profiles of the individual loads. The solution of this type of aggregation problems is necessary for the participation of small loads in demand response programs, but scalability can be an issue. The minimum cost network flow problem belongs to a restricted class of discrete optimization problems for which efficient and scalable algorithms exist. Thanks to its scalability, this technique can be useful in the control of a large number of smart appliances in future real-time balancing markets. The technique is efficient enough to be employed by an aggregation module with limited computational resources. Alternatively, when indicative price information is not made available by the system operator, the technique can be combined with an external forecast in order to minimize possible imbalance costs.

Keywords