Molecules (Feb 2025)

Comparison of the Immune Enhancing Activity and Chemical Constituents Between Imitation Wild and Cultivated Astragali Radix

  • Shuo Zhao,
  • Xueting Li,
  • Yumeng Wang,
  • Rui Xu,
  • Xu Li,
  • Jiushi Liu,
  • Xiaolin Hou,
  • Haitao Liu

DOI
https://doi.org/10.3390/molecules30040923
Journal volume & issue
Vol. 30, no. 4
p. 923

Abstract

Read online

Astragali Radix (AR), a traditional food and medicinal herb used for thousands of years, is widely recognized for its role in enhancing immunity, particularly when combined with adjuvant chemotherapy. The two primary types of AR available in the market are imitation wild AR (grown for seven years) and cultivated AR (grown for two years). However, whether differences exist in their immune-enhancing effects and chemical constituents remains unclear. In this study, a comparative analysis was performed to evaluate the immune activity and chemical composition of cultivated and imitation wild AR. Immune activity was assessed through in vivo animal studies, while metabolomic analysis was used to characterize their chemical profiles. The results demonstrate that AR possesses significant antitumor and immune-enhancing activities, with imitation wild AR showing superior efficacy compared with cultivated AR. Following 16 days of daily AR treatment, both the thymus and spleen coefficients were significantly increased, effectively reversing the immune dysfunction induced by cyclophosphamide (CTX). Moreover, the administration of AR showed no significant toxicity, as evidenced by the stable liver and kidney function indicators, including ALT, UREA, and CRE levels. To investigate chemical differences, a customized chemotaxonomic-based in-house library containing 215 compounds was developed and integrated with the Progenesis QI informatics platform for metabolite annotation. Using multivariate analysis, 48 constituents were identified in total: 46 unique to the imitation wild AR and 45 specific to the cultivated AR. The correlation between chemical constituents and the pharmacological effects of AR was evaluated. Based on orthogonal partial least-squares discriminant analysis (OPLS-DA) and S-plot analysis, five potential biomarkers were identified, including Calycosin-7-glucoside, Rhamnocitrin-3-O-β-D-glucopyranoside, Ononin, 3,5-Dicaffeoylquinic acid, and Acetylastragaloside I. These biomarkers likely account for the differences in immune-enhancing effects between the two AR types. This study provides a scientific foundation for the rational use of Astragali Radix.

Keywords