Molecular Therapy: Methods & Clinical Development (Dec 2020)
Targeting the Root Cause of Mucopolysaccharidosis IIIA with a New scAAV9 Gene Replacement Vector
Abstract
No treatment is available to address the unmet needs of mucopolysaccharidosis (MPS) IIIA patients. Targeting the root cause, we developed a new self-complementary adeno-associated virus 9 (scAAV9) vector to deliver the human N-sulfoglucosamine sulfohydrolase (hSGSH) gene driven by a miniature cytomegalovirus (mCMV) promoter. In pre-clinical studies, the vector was tested at varying doses by a single intravenous (i.v.) infusion into MPS IIIA mice at different ages. The vector treatments resulted in rapid and long-term expression of functional recombinant SGSH (rSGSH) enzyme and elimination of lysosomal storage pathology throughout the CNS and periphery in all tested animals. Importantly, MPS IIIA mice treated with the vector at up to 6 months of age showed significantly improved behavior performance in a hidden task in the Morris water maze, as well as extended lifespan, with most of the animals surviving within the normal range, indicating that the vector treatment can prevent and reverse MPS IIIA disease progression. Notably, 2.5 × 1012 vector genomes (vg)/kg was functionally effective. Furthermore, the vector treatment did not lead to detectable systemic toxicity or adverse events in MPS IIIA mice. These data demonstrate the development of a safe and effective new gene therapy product for treating MPS IIIA, which further support the extended clinical relevance of platform recombinant AAV9 (rAAV9 gene delivery for treating broad neurogenetic diseases.