Frontiers in Ecology and Evolution (Mar 2023)

Quantitative analysis of the spatial diversity of Moraceae in China

  • Dangui Lu,
  • Lichuan Qiu,
  • Meiqi Jiao,
  • Zhongke Feng,
  • Zhongke Feng,
  • Zhichao Wang

DOI
https://doi.org/10.3389/fevo.2023.1110018
Journal volume & issue
Vol. 11

Abstract

Read online

Changes in distribution patterns of economically essential forest species under global change are urgently needed in the scientific forecast, and large-scale spatial modeling is a crucial tool. Using diversity pattern indicators and other data obtained through geographic information systems (GIS) and spatial data on Moraceae species obtained from published data, we quantitatively studied the spatial diversity patterns of genera in the Moraceae in China. The results revealed that the patch richness, diversity index, and total shape index of the genera with multiple species were significantly higher than those of the monotypic genera. Monotypic genera had no spatial diversity and no distribution in patterns of spatial diversity. Maclura had the most concentrated spatial distribution and the lowest distribution area among the Moraceae in China. The number of patches and the total area were the smallest, while the most significant patch index was the highest. Maclura had no spatial diversity. Streblus had the highest patch abundance compared to other genera with fewer species. Streblus had the smallest number of patches and total area of distribution, the lowest spatial distribution, and a small total shape index, indicating its concentrated distribution. The values of the Shannon’s Diversity Index (SHDI) and Simpson’s Diversity Index (SIDI) were the highest, and the spatial distribution was the most diverse among the genera with fewer species. The patch type of Streblus had a more considerable value than other genera, but the number of patches was small, and the total shape index was low. Streblus was primarily distributed in the south of Yunnan, western Guangxi, the west and central parts of Hainan, and southern Guangdong. Most of these areas were mountainous. The temperature decreased with elevation, providing diverse environmental conditions for the narrow-stem genus. Among the Moraceae in China, the spatial distribution of Ficus was the most diverse, with the highest number of patches, patch types, total shape index, SHDI, and SIDI values. The spatial diversity of Ficus could be used as a protected area for Moraceae in China.

Keywords