علوم و تکنولوژی پلیمر (Apr 2013)
Synthesis of Collagen-Based Hydrogel Nanocomposites Using Montmorillonite and Study of Adsorption Behavior of Cd from Aqueous Solutions
Abstract
Novel collagen-based hydrogel nanocomposites were synthesized by graft copolymerization of acrylamide and maleic anhydrid in the presence of different amounts of montmorillonite, using methylenebisacrylamide (MBA)and ammonium persulfate (APS) as crosslinker and initiator, respectively. The optimum amount of clay on the swelling properties of the samples was studied. It was found that the hydrogel nanocomposites exhibited improved swelling capacity compared with the clay-free hydrogel. Gel content was also studied and the resultsindicated that the inclusion of montmorillonite causes an increase in gel content. The sorption behavior of heavy metal ion from aqueous solutions was investigated by its relationship with pH, contact time, initial concentration of metal ion and also, montmorillonite content of the nanocomposites. The experimental data showed thatCd2+ ion adsorption increases with increasing initial concentration of Cd2+ ion in solution and the clay content. Also, the results indicated that more than 88% of the maximum adsorption capacities toward Cd2+ ion were achieved within the initial 10 minute. Functional groups of the prepared hydrogels have shown complexation abilitywith metal ions and improving hydrogels' adsorption properties. It was concluded that the nanocomposites could be used as fast-responsive, and high capacity sorbent materials in Cd2+ ion removing processes. The prepared hydrogel nanocomposites were characerized by means of XRD patterns, TGA thermal methods and FTIRspectroscopy. The XRD patterns of nanocomposites showed that the interlayer distance of montmorillonite was changed and the clay sheets were exfoliated. Furthermore, the results showed that by increasing the montmorillonite content, thermal stability of the nanocomposites was clearly improved.
Keywords