Journal of Marine Science and Engineering (Feb 2024)

Two-Dimensional Wave Interaction with a Rigid Body Floating near the Marginal Ice Zone

  • Bingbing Wan,
  • Yuyun Shi,
  • Zhifu Li

DOI
https://doi.org/10.3390/jmse12020272
Journal volume & issue
Vol. 12, no. 2
p. 272

Abstract

Read online

The interaction problem of waves with a body floating near the marginal ice zone is studied, where the marginal ice zone is modeled as an array of multiple uniformly sized floating ice sheets. The linear velocity potential theory is applied for fluid flow, and the thin elastic plate mode is utilized to describe the ice sheet deflection. A hybrid method is used to solve the disturbed velocity potential; i.e., around the floating body, a boundary integral equation is established, while in the domain covered by ice sheets, the velocity potential is expanded into an eigenfunction series, and in the far-field with a free surface, a similar eigenfunction expansion is used to satisfy the radiation condition. The boundary integral equation and the coefficients of the eigenfunction expansions are solved together based on the continuous conditions of pressure and velocity on the interface between the sub-domains. Extensive results for the equivalent Young’s modulus of the ice sheet array and hydrodynamic force on the body are provided, and the effect of individual ice sheet length as well as wave parameters are investigated in detail.

Keywords