Hyperspectral Microscopy Technology to Detect Syrups Adulteration of Endemic Guindo Santo and Quillay Honey Using Machine-Learning Tools
Guillermo Machuca,
Juan Staforelli,
Mauricio Rondanelli-Reyes,
Rene Garces,
Braulio Contreras-Trigo,
Jorge Tapia,
Ignacio Sanhueza,
Anselmo Jara,
Iván Lamas,
Jose Max Troncoso,
Pablo Coelho
Affiliations
Guillermo Machuca
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4080871, Chile
Juan Staforelli
Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción 3349001, Chile
Mauricio Rondanelli-Reyes
Laboratorio de Palinología y Ecología Vegetal, Departamento de Ciencia y Tecnología Vegetal, Universidad de Concepción, Campus Los Angeles, Juan Antonio Coloma 0201, Los Angeles 4451032, Chile
Rene Garces
Facultad de Ciencias de la Naturaleza, Universidad San Sebastián, Concepción 4080871, Chile
Braulio Contreras-Trigo
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4080871, Chile
Jorge Tapia
School of Electrical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362804, Chile
Ignacio Sanhueza
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4080871, Chile
Anselmo Jara
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4080871, Chile
Iván Lamas
Laboratorio de Palinología y Ecología Vegetal, Departamento de Ciencia y Tecnología Vegetal, Universidad de Concepción, Campus Los Angeles, Juan Antonio Coloma 0201, Los Angeles 4451032, Chile
Jose Max Troncoso
Research Center in Natural and Exact Sciences, School of Education and Social Sciences, Adventist University of Chile, Chillan 3780000, Chile
Pablo Coelho
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Concepción 4080871, Chile
Honey adulteration is a common practice that affects food quality and sale prices, and certifying the origin of the honey using non-destructive methods is critical. Guindo Santo and Quillay are fundamental for the honey production of Biobío and the Ñuble region in Chile. Furthermore, Guindo Santo only exists in this area of the world. Therefore, certifying honey of this species is crucial for beekeeper communities—mostly natives—to give them advantages and competitiveness in the global market. To solve this necessity, we present a system for detecting adulterated endemic honey that combines different artificial intelligence networks with a confocal optical microscope and a tunable optical filter for hyperspectral data acquisition. Honey samples artificially adulterated with syrups at concentrations undetectable to the naked eye were used for validating different artificial intelligence models. Comparing Linear discriminant analysis (LDA), Support vector machine (SVM), and Neural Network (NN), we reach the best average accuracy value with SVM of 93% for all classes in both kinds of honey. We hope these results will be the starting point of a method for honey certification in Chile in an automated way and with high precision.