Hereditary Cancer in Clinical Practice (May 2004)

Germline Missense Changes in the APC Gene and Their Relationship to Disease

  • Scott Rodney J,
  • Crooks Renee,
  • Rose Lindy,
  • Attia John,
  • Thakkinstian Ammarin,
  • Thomas Lesley,
  • Spigelman Allan D,
  • Meldrum Cliff J

DOI
https://doi.org/10.1186/1897-4287-2-2-81
Journal volume & issue
Vol. 2, no. 2
pp. 81 – 91

Abstract

Read online

Abstract Familial adenomatous polyposis (FAP) is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC) gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K) and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT) or the In Vitro Synthetic Protein assay (IVSP). In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study. The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

Keywords