Revista Brasileira de Anestesiologia (Feb 2005)
Sistemas respiratórios com absorção de CO2, circulares, valvulares: comparação do comportamento térmico entre sistema coaxial e convencional com diferentes fluxos de gás fresco Sistemas respiratorios con absorción de CO2, circulares, valvulares: comparación del comportamiento térmico entre el sistema coaxial y convencional con diferentes flujos de gas fresco Anesthesia breathing systems with CO2 absorption, circle valve circuit: comparison of thermal behavior of coaxial system and conventional system with different fresh gas flows
Abstract
JUSTIFICATIVA E OBJETIVOS: A manutenção da temperatura do gás inalado pelo paciente durante o procedimento anestésico é fundamental para evitar complicações respiratórias durante o peri-operatório. O objetivo deste estudo é comparar a capacidade de aquecimento dos gases inalados em sistemas respiratórios com absorção de CO2, circulares, valvulares, coaxial e convencional, variando o fluxo de gás fresco (FGF). MÉTODO: Foram estudados dois sistemas respiratórios em um simulador de pulmão, que foi ventilado com volume corrente de 600 mL e freqüência de 10 bpm. O modelo simulava a produção de CO2, através da administração de fluxo de 250 mL.min-1 de CO2, e o gás exalado do pulmão-teste passava por um umidificador aquecido para simular o gás expirado. Os dois sistemas foram classificados como circulares, valvulares, com absorção de CO2. No sistema A (coaxial), o ramo inspiratório passava pelo interior do ramo expiratório, enquanto que o sistema B foi o convencional. As medidas de temperatura do gás inalado foram realizadas nos momentos 0, 5, 10, 20, 30, 40, 50, 60 e 90 minutos, sendo empregados FGF baixos (0,5 e 1 L.min-1) e altos (3 e 6 L.min-1). RESULTADOS: O sistema A apresentou variação térmica significativa entre o início e o final dos ensaios (22,47 ± 1,77 ºC e 24,27 ± 3,52 ºC p JUSTIFICATIVA Y OBJETIVOS: El mantenimiento de la temperatura del gas inhalado por el paciente durante el procedimiento anestésico es de fundamental importancia para evitar complicaciones respiratorias durante el peri-operatorio. El objetivo de este estudio es comparar, a través de modelo experimental, la capacidad de calentamiento de los gases inhalados con la utilización de sistemas respiratorios con absorción de CO2, circulares, valvulares coaxial y convencional, variándose el flujo de gas fresco (FGF). MÉTODO: Fue realizado en estudio experimental en laboratorio, testándose dos sistemas respiratorios en un simulador de pulmón, que fue ventilado con volumen corriente de 600 mL y frecuencia de 10 incursiones por minuto. El modelo simulaba la producción de CO2, a través de la administración de flujo de 250 mL .min-1 de CO2, y el gas exhalado del pulmón de prueba pasaba por un humidificador calentado para simular el gas expirado. Los dos sistemas fueron clasificados como circulares, valvulares, con absorción de CO2. En el sistema A (coaxial), la rama inspiratoria pasaba por el interior de la rama expiratoria, mientras que el sistema B fue el convencional. Las medidas de temperatura del gas inhalado fueron realizadas en los momentos 0, 5, 10, 20, 30, 40, 50, 60 y 90 minutos, siendo empleados FGF bajos (0,5 e 1 L.min-1) y altos (3 y 6 L.min-1). RESULTADOS: El sistema A presentó variación térmica significativa entre el inicio y el final de los ensayos (22,47 ± 1,77 ºC y 24,27 ± 3,52 ºC p BACKGROUND AND OBJECTIVES: The adequate maintenance of inhaled gases temperature during anesthetic procedures is critical to prevent perioperative respiratory complications. This study aimed at comparing the ability to warm up inhaled gases of coaxial breathing system and conventional system, by varying fresh gas flows (FGF). METHODS: Breathing systems were tested in a lung simulator ventilated with 600 mL tidal volume and respiratory frequency of 10 bpm. The model simulated human CO2 production by delivering 250 mL.min-1 of CO2 flow. Then, exhaled gas from the model was directed to a pre-warmed humidifier to simulate human exhaled gas. Both systems were classified as circle, valve circuits with CO2 absorption. In the coaxial system (model A), the inspiratory branch was enveloped by the expiratory branch, whereas the conventional one (model B) presented separated respiratory branches. Inhaled gas temperature was measured at the following moments: 0, 5, 10, 20, 30, 40, 50, 60 and 90 minutes, with low (0.5 and 1 L.min-1) and high (3 and 6 L.min-1) FGF. RESULTS: Model A presented significant thermal variation between beginning and end of experiment (22.47 ± 1.77 ºC and 24.27 ± 3.52 ºC respectively, p < 0.05). Both models A and B produced similar temperatures at the end of the study (24.27 ± 3.52 ºC and 23.61 ± 1.93 ºC respectively). There was no difference between final temperatures of both models and environmental temperature (21.25 ± 1.20 ºC and 21.81 ± 1,87 ºC respectively). Low FGF has produced similar temperatures to those observed at the end of the study with higher flows in both models (A: 25.53 ± 4.78 ºC and 23.02 ± 0.80 ºC; B: 24.50 ± 0.85 ºC and 22.72 ± 2.36 ºC, respectively). CONCLUSIONS: The coaxial system presented significant thermal variation between beginning and end of experiment, while this was not observed in the conventional one. No difference was observed in final temperatures when comparing both systems, regardless of the FGF.
Keywords