Microbial Cell Factories (Feb 2021)

Engineering of Saccharomyces cerevisiae for anthranilate and methyl anthranilate production

  • Joosu Kuivanen,
  • Matti Kannisto,
  • Dominik Mojzita,
  • Heiko Rischer,
  • Mervi Toivari,
  • Jussi Jäntti

DOI
https://doi.org/10.1186/s12934-021-01532-3
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background Anthranilate is a platform chemical used by the industry in the synthesis of a broad range of high-value products, such as dyes, perfumes and pharmaceutical compounds. Currently anthranilate is produced via chemical synthesis from non-renewable resources. Biological synthesis would allow the use of renewable carbon sources and avoid accumulation of toxic by-products. Microorganisms produce anthranilate as an intermediate in the tryptophan biosynthetic pathway. Several prokaryotic microorganisms have been engineered to overproduce anthranilate but attempts to engineer eukaryotic microorganisms for anthranilate production are scarce. Results We subjected Saccharomyces cerevisiae, a widely used eukaryotic production host organism, to metabolic engineering for anthranilate production. A single gene knockout was sufficient to trigger anthranilate accumulation both in minimal and SCD media and the titer could be further improved by subsequent genomic alterations. The effects of the modifications on anthranilate production depended heavily on the growth medium used. By growing an engineered strain in SCD medium an anthranilate titer of 567.9 mg l−1 was obtained, which is the highest reported with an eukaryotic microorganism. Furthermore, the anthranilate biosynthetic pathway was extended by expression of anthranilic acid methyltransferase 1 from Medicago truncatula. When cultivated in YPD medium, this pathway extension enabled production of the grape flavor compound methyl anthranilate in S. cerevisiae at 414 mg l−1. Conclusions In this study we have engineered metabolism of S. cerevisiae for improved anthranilate production. The resulting strains may serve as a basis for development of efficient production host organisms for anthranilate-derived compounds. In order to demonstrate suitability of the engineered S. cerevisiae strains for production of such compounds, we successfully extended the anthranilate biosynthesis pathway to synthesis of methyl anthranilate.

Keywords