Computation (Jan 2018)

Optimization of Airfoils Using the Adjoint Approach and the Influence of Adjoint Turbulent Viscosity

  • Matthias Schramm,
  • Bernhard Stoevesandt,
  • Joachim Peinke

DOI
https://doi.org/10.3390/computation6010005
Journal volume & issue
Vol. 6, no. 1
p. 5

Abstract

Read online

The adjoint approach in gradient-based optimization combined with computational fluid dynamics is commonly applied in various engineering fields. In this work, the gradients are used for the design of a two-dimensional airfoil shape, where the aim is a change in lift and drag coefficient, respectively, to a given target value. The optimizations use the unconstrained quasi-Newton method with an approximation of the Hessian. The flow field is computed with a finite-volume solver where the continuous adjoint approach is implemented. A common assumption in this approach is the use of the same turbulent viscosity in the adjoint diffusion term as for the primal flow field. The effect of this so-called “frozen turbulence” assumption is compared to the results using adjoints to the Spalart–Allmaras turbulence model. The comparison is done at a Reynolds number of R e = 2 × 10 6 for two different airfoils at different angles of attack.

Keywords