Agriculture (Sep 2024)

TTPRNet: A Real-Time and Precise Tea Tree Pest Recognition Model in Complex Tea Garden Environments

  • Yane Li,
  • Ting Chen,
  • Fang Xia,
  • Hailin Feng,
  • Yaoping Ruan,
  • Xiang Weng,
  • Xiaoxing Weng

DOI
https://doi.org/10.3390/agriculture14101710
Journal volume & issue
Vol. 14, no. 10
p. 1710

Abstract

Read online

The accurate identification of tea tree pests is crucial for tea production, as it directly impacts yield and quality. In natural tea garden environments, identifying pests is challenging due to their small size, similarity in color to tea trees, and complex backgrounds. To address this issue, we propose TTPRNet, a multi-scale recognition model designed for real tea garden environments. TTPRNet introduces the ConvNext architecture into the backbone network to enhance the global feature learning capabilities and reduce the parameters, and it incorporates the coordinate attention mechanism into the feature output layer to improve the representation ability for different scales. Additionally, GSConv is employed in the neck network to reduce redundant information and enhance the effectiveness of the attention modules. The NWD loss function is used to focus on the similarity between multi-scale pests, improving recognition accuracy. The results show that TTPRNet achieves a recall of 91% and a mAP of 92.8%, representing 7.1% and 4% improvements over the original model, respectively. TTPRNet outperforms existing object detection models in recall, mAP, and recognition speed, meeting real-time requirements. Furthermore, the model integrates a counting function, enabling precise tallying of pest numbers and types and thus offering practical solutions for accurate identification in complex field conditions.

Keywords